top of page

Lecture Materials

Below Lecture Materials and recommended Book list is provided.

 

Assignments are given in the assignment tab.

 

LECTURE NOTES

BOOKS

 

Hastie, Trevor - Statistical learning with Sparsity : the Lasso and Generalizations, ISBN 9781498712163, CRC Press LLC, 2015

Lecture 3 - Penalty, Prox, Loss

Lecture 4 - Statistical Inference

 

Boyd, Stephen P. - Convex Optimization, ISBN 9780521833783, Cambridge University Press, 2004 

 

 

Ben-Tal, Aharon, Nemirovski, Arkadi - Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications, ISBN 9780898714913, SIAM, 2001

 

 

Hastie, Trevor - The Elements of Statistical learning : Data Mining, Inference, and Prediction, ISBN 9780387848570, Springer, 2009

 

Lecture 10 - Meta-Learning, Manifold Learning; Representation Learning, Convex Clustering

​

Lecture 6 - Graphical Models, Duality, ADMM and prox 

​

Lecture 11 - Robustness and Model Mis-Specification Mitigation

 

Jorge Nocedal, Stephen J. Wright - Numerical Optimization, Springer Series in Operations Research and Financial Engineering, ISBN 978-0387303031, Springer, 2006

 

Lecture 9 - Kernels Methods and Multiple Kernel Learning, Deep Learning

​

bottom of page